

.

Marking Scheme Q1 (10 points)

.

Part A (3.0 pt) If the final answer is written then the complete point will be achieved

A-1	$S_0 = \sigma T_{\rm S}^4 \cdot \left(\frac{R_{\rm S}}{d}\right)^2 $ (0.4pt),	0.6 pt
	$S_0 = \delta I_{\rm S} \cdot \left(\frac{1}{d}\right) (0.4 \text{pt}),$	
	[Realizing energy conservation (0.1pt)]	
	Numerical value of $S_0 = 1.35 \times 10^3 \text{ W/m}^2$ (0.2pt)	
	[more than 4 significant figures (0.1pt)]	
A-2	$T_{\rm E} = \left(\frac{S_0}{4\sigma}\right)^{\frac{1}{4}} = \sqrt{\frac{R_{\rm S}}{2d}} T_{\rm S} \text{ (0.4pt),}$	0.6 pt
	[realizing energy balance (0.1pt)]	
	Numerical value of $T_{\rm E} = 278$ K (0.2pt)	
	[more than 4 significant figures (0.1pt)]	
A-3	$f(x) = 5(1 - e^{-x}) - x$	0.4 pt
A-4	$x_{\rm m} = \{4.96, 4.97\}$ (0.3 pt),	0.4 pt
	[more than 4 significant figures (0.2pt)]	
	Numerical value of $b = [2.89, 2.90] \times 10^6$ nm. K (0.1 pt)	
	[more than 4 significant figures (0.1pt)]	
A-5	$\lambda_{\rm max}^{\rm Sun} = [5.01, 5.02] \times 10^2 \text{ nm}(0.1 \text{ pt}),$	0.2 pt
	$\lambda_{\text{max}}^{\text{Earth}} = 1.04 \times 10^4 \text{ nm}(0.1 \text{ pt})$	
	[more than 4 significant figures (0.1pt)]	
A-6		0.8 pt
	[realizing $\tilde{u}_{\rm S} = \left(\frac{R_{\rm S}}{d}\right)^2 u_{\rm S}(\lambda)(0.3 {\rm pt})$]	
	Numerical value of $\gamma = [1.20, 1.21] \times 10^{-2}$ (0.2 pt)	
	[more than 4 significant figures (0.1pt)]	

Part B (7.0 pt)

B-1		1.0 pt
	$T_A = \left(\frac{(1-r_A)\frac{S_0}{4}}{\sigma}\right)^4$	no pr
	$T_{\rm E} = \left(\frac{(1-r_{\rm A})\frac{S_0}{2}}{\sigma}\right)^{\frac{1}{4}}$	
	Two correct expressions (0.8 pt)	
	[One correct expression (0.6 pt)]	
	[no correct expression: for each energy balance relation (0.2pt)]	
	Numerical value of $T_A = 2.58 \times 10^2$ K (0.1 pt)	
	Numerical value of $T_{\rm E} = 3.07 \times 10^2$ K (0.1 pt)	
	[more than 4 significant figures (0.1pt)]	
B-2	$\alpha = r_{\rm A} + \frac{(1 - r_{\rm A})^2 r_{\rm E}}{1 - r_{\rm A} r_{\rm E}}$ (1.4pt)	1.6 pt
	$[\tilde{S}_0 = r_A S_0 (0.1 \text{ pt})]$	
	$\begin{bmatrix} \tilde{S}_0 = r_A S_0 \ (0.1 \text{ pt}) \\ \tilde{S}_1 = (1 - r_A)^2 r_E S_0 = \frac{(1 - r_A)^2}{r_A} r_E \tilde{S}_0 \ (0.3 \text{ pt}) \end{bmatrix}$	

	$\tilde{S}_n = \frac{\tilde{S}_{n-1}}{1 - r_A} r_A r_E \times (1 - r_A) = r_A r_E \tilde{S}_{n-1} = (r_A r_E)^{n-1} \tilde{S}_1$ (0.5 pt)	
	$\tilde{S} = \sum_{n=0}^{\infty} \tilde{S}_n = \tilde{S}_0 + \tilde{S}_1 \sum_{n=1}^{\infty} (r_A r_E)^{n-1}$ (0.3 pt)]	
	Numerical value of $\alpha = 3.13 \times 10^{-1}$ (0.2pt)	
	[more than 4 significant figures (0.1pt)]	
B-3	$T_{\rm E} = \left[\frac{(1-\alpha)}{2\sigma(2-\epsilon)}S_0\right]^{\frac{1}{4}} (0.6 {\rm pt})$	1.0 pt
	Numerical value of $\epsilon = [8.07, 8.11] \times 10^{-1} (0.4 \text{ pt})$	
	[wrong numerical value: correct expression for ϵ (0.2pt)] [more than 4 significant figures (0.3pt)]	
B-4	$\frac{dT_{\rm E}}{d\epsilon} = \frac{1}{4} \left[\frac{(1-\alpha)S_0}{2\sigma(2-\epsilon)} \right]^{\frac{1}{4}} \frac{1}{(2-\epsilon)} (0.6 {\rm pt}),$	0.8 pt
	Numerical value of $\delta T_{\rm E} = [4.87, 4.92] \times 10^{-1}$ K (0.2pt)	
	[more than 4 significant figures (0.1pt)]	
B-5	$\epsilon = \frac{\sigma T_{\rm E}^4 - (1 - \alpha) \frac{S_0}{4}}{\sigma (T_{\rm E}^4 - T_{\rm A}^4)}$ (0.6pt)	1.6 pt
	$k = \frac{(2T_{\rm A}^4 - T_{\rm E}^4) \times \left[\sigma T_{\rm E}^4 - (1 - \alpha) \frac{S_0}{4}\right]}{(T_{\rm E}^4 - T_{\rm A}^4) \times (T_{\rm E} - T_{\rm A})} (0.6 \text{pt})$	
	[Correct relations for balance of energy (0.3+0.3 pt)]	
	Numerical value of $\epsilon = [8.47, 8.52] \times 10^{-1}$ (0.2pt)	
	Numerical value of $k = [3.57, 3.66] \times 10^{-1}$ W/m ² K (0.2pt)	
	[more than 4 significant figures for each one (0.1pt)]	
B-6	(a) (0.4+0.4)	1.0 pt
	$\begin{cases} \epsilon \left[\frac{1}{T_{\rm E} - T_{\rm A}} + \frac{4T_{\rm E}^3}{2T_{\rm A}^4 - T_{\rm E}^4} \right] \frac{dT_{\rm E}}{d\epsilon} = 1 + \epsilon \left[\frac{8T_{\rm A}^3}{2T_{\rm A}^4 - T_{\rm E}^4} + \frac{1}{T_{\rm E} - T_{\rm A}} \right] \frac{dT_{\rm A}}{d\epsilon} \\ 1 + \epsilon \left[\frac{4T_{\rm E}^3}{T_{\rm E}^4 - T_{\rm A}^4} - \frac{4\sigma T_{\rm E}^3}{\sigma T_{\rm E}^4 - (1 - \alpha)^{\frac{S_{\rm D}}{2}}} \right] \frac{dT_{\rm E}}{d\epsilon} = \frac{4T_{\rm A}^3}{T_{\rm E}^4 - T_{\rm A}^4} \epsilon \frac{dT_{\rm A}}{d\epsilon} \end{cases} $ (0.6 pt)	
	$\begin{cases} 1 + \epsilon \left[\frac{4T_{\rm E}^3}{T_{\rm E}^4 - T_{\rm A}^4} - \frac{4\sigma T_{\rm E}^3}{\sigma T_{\rm E}^4 - (1 - \alpha) \frac{S_0}{4}} \right] \frac{dT_{\rm E}}{d\epsilon} = \frac{4T_{\rm A}^3}{T_{\rm E}^4 - T_{\rm A}^4} \epsilon \frac{dT_{\rm A}}{d\epsilon} \end{cases} $ (0.6 pt)	
	(b) $\delta T_{\rm E} = [5.21, 5.28] \times 10^{-1} { m K}$ (0.2pt)	
	[more than 4 significant figures for each one (0.1pt)]	